Automatic Control System, Electrical, Heating, Ventilating, Air Conditioning, and Refrigeration System

Wednesday, April 27, 2011

Kelistrikan Kulkas (Refrigerator Electrical)

Kali ini kita akan membahas tentang cara kerja rangkaian kelistrikan pada sebuah refrigerator dengan kontrol defrost otomatis (automatic defrost control). Refrigerator yang dibahas disini adalah jenis aplikasi yang umum ditemukan di rumah tangga (domestic refrigerator).

Overview
Refrigerator adalah suatu alat/mesin yang berfungsi untuk menyimpan makanan sehingga makanan menjadi lebih awet dan segar. 


Kenapa makanan yang disimpan dalam refrigerator bisa lebih tahan lama dibandingkan dengan ditempatkan di udara terbuka?
Penyebab tidak tahan lamanya makanan adalah terdapatnya bakteri pembusuk dalam makanan tersebut, dalam kondisi udara terbuka (temperatur ruang tinggi, misalnya 30°C) perkembangbiakan bakteri terjadi sangat cepat akibatnya makanan menjadi cepat busuk. Berdasarkan penelitian perkembangbiakan ini bisa dihambat (diperlambat) jika temperatur ruang diturunkan. Perkembangbiakan bakteri yang signifikan ini ternyata ketika temperatur ruang diturunkan dibawah 10°C menjadi sangat lambat. Dengan demikian proses pembusukan makanan dapat diperlambat juga.
Maka dibuatlah suatu alat yang berfungsi untuk menjaga/ mengkondisikan temperatur untuk menjaga makanan  tersebut sehingga bisa bertahan lebih lama. Alat tersebut dinamakan "refrigerator" atau kita mengenalnya sebagai kulkas.



Bagaimana refrigerator bisa menjaga temperatur yang kita inginkan?
Sebuah alat yang dinamakan thermostat, bekerja untuk mengontrol temperatur dalam ruang yang didinginkan.
Thermostat akan menjaga temperatur dalam batasan yang telah ditentukan (di-setting).
Anda pernah melihat tombol pengatur di dalam refrigerator dengan tanda 1-2-3 dst, high-medium-low, warm-cool-coldest, ataupun tanda lainnya untuk menyatakan level temperatur? Itulah yang dinamakan thermostat.



Ada refrigerator dengan 2 ruang yang berbeda, apakah fungsi masing-masing ruangan tersebut?
Itu adalah refrigerator no-frost (frost free). Refrigerator/kulkas 2 pintu kalau secara umumnya disebut seperti itu.
Pada refrigerator jenis ini terdapat dua kategori temperatur ruang yang berbeda yaitu:
1. Ruang Freezer: untuk membekukan makanan dengan range temperaturnya dari 0°C s/d -25°C (umumnya ditempatkan dibagian atas /pintu atas)
2. Ruang Refrigerator: untuk menyimpan makanan dalam waktu beberapa hari saja dengan range temperaturnya dari +2°C s/d +10°C (umumnya ditempatkan di bagian bawah).


Untuk menjaga temperatur di masing-masing ruang maka diperlukan suatu rangkaian kelistrikan yang bisa mengontrol kerja kompresor dan juga mengatur proses pencairan bunga es. 
Dibawah ini adalah salah satu contoh rangkaian pengontrol sebuah refrigerator yang umum digunakan banyak manufaktur.




Sebelum kita membahas cara kerjanya, disini akan saya jelaskan dulu masing masing komponennya:
  1. Thermostat: Ada dua cara pemasangan thermostat, dipasang dibagian freezer atau dipasang dibagian refrigerator. Jika thermostat yang memiliki sebuah kontak listrik dipasang dibagian freezer untuk mengontrol kerja kompresor maka untuk mengontrol temperatur ruangan refrigerator digunakan mechanical thermostat yang mengontrol buka tutupnya saluran udara dingin dari bagian freezer yang masuk ke ruang refrigerator. 
  2. Defrost Timer: suatu alat yang berfungsi untuk mengatur lamanya kerja kompresor dan mengatur proses pencairan bunga es di Evaporator (defrost cycle). Kompresor diatur umumnya bekerja sekitar 6 jam setelah itu harus dilakukan pencairan bunga es yang menggumpal di Evaporator dan bak penampung air yang terdapat dibawahnya. Lamanya proses defrost tergantung ketebalan es di Evaporator, semakin tebal semakin lama. 
  3. Defrost Thermo: Suatu alat yang berfungsi untuk mendeteksi temperatur di sekitar Evaporator sehingga bisa mengatur apakah proses pencairan es perlu dilakukan atau tidak. Alat ini juga berfungsi untuk menghentikan proses defrost apabila temperatur evaporator sudah terdeteksi diatas 0°C. Umumnya sekitar 4°C. Tergantung peletakan dari Defrost Thermo itu sendiri.
  4. Plate Heater: berfungsi untuk mencairkan es di bagian penampung air selama proses defrost.
  5. Defrost Heater: adalah pemanas utama yang berfungsi untuk mencairkan es yang ada di Evaporator.Ukuran heater ini sekitar 120-150Watt.
  6. Thermo Fuse: Apabila Defrost Thermo mengalami kerusakan. Misalnya tidak mau memutus pada temperatur yang telah ditetapkan maka Defrost Heater akan terus memanaskan ruangan sekitar Evaporator. Akibatnya temperatur di ruangan Evaporator akan naik terus dan jika dibiarkan akan sangat berbahaya, selain heater bisa rusak, juga interior dari kulkas tesebut kemungkinan besar akan meleleh karena pemanasan yang tidak terkontrol tersebut. Thermo Fuse akan putus jika temperaturnya mencapai 72°C (beberapa manufaktur ada yang membatasi sampai 70 atau 71°C).
  7. Kompresor Motor: berfungsi untuk menggerakkan Kompresor sehingga refrigeran bisa bersirkulasi.
  8. Thermal Overload Protector: Mencegah terbakarnya Motor Kompresor yang diakibatkan oleh panas yang berlebihan.
  9. PTC Starter: Salah satu jenis starter yang digunakan saat Kompresor mulai bekerja.
  10. SC (Starting Capacitor): Kapasitor yang berfungsi untuk menambah torsi  pada saat Kompresor mulai bekerja.
  11. RC (Running Capacitor): fungsi utamanya untuk menggeser sudut fase, dan memanfaatkan kumparan bantu sehingga Kompresor bekerja lebih effisien.
  12. Evaporator Fan Motor: Berfungsi untuk mensirkulasikan udara dalam ruangan.
  13. Freezer Door Switch: Sebuah saklar yang dipasang di bagian pintu Freezer, berfungsi untuk mematikan kipas saat pintu dibuka, sehingga bisa mengurangi keluarnya udara dingin dari ruangan freezer.
  14. Refrigerator Door Switch: Sebuah saklar yang dipasang di bagian pintu Refrigerator, berfungsi untuk mematikan kipas evaporator saat pintu dibuka, sehingga bisa mengurangi keluarnya udara dingin dari ruangan refrigerator.Selain itu saklar ini juga berfungsi untuk menghidupkan lampu penerangan dalam ruang refrigerator.
  15. Refrigerator Interior Light: Sebuah lampu penerangan yang akan hidup jika pintu refrigerator dibuka.

Asumsi Penyetelan dan Komponen Karakteristik
Sebelum menjelaskan prinsip kerjanya, disini saya buat beberapa asumsi penyetelan dan karakteristik komponen untuk memudahkan penjelasannya:
  1. Temperatur Ruang Freezer (Electric Thermostat) diset pada range -15°C s/d -20°C.
  2. Temperatur Ruang Refrigerator (Damper Thermostat) diset pada range +4°C s/d +2°C.
  3. Defrost timer mengatur kerja Kompresor selama 6 jam, dan setelah proses defrost selesai, kontak listrik akan kembali ke posisi Kompresor (Run) setelah 7 menit Defrost Thermo memutus.
  4. Defrost Thermo akan terhubung pada temperatur -2°C dan memutus pada temperatur 4°C.
  5. Tegangan normal untuk refrigerator adalah 220VAC / 50Hz
  6. Kondisi awal temperatur ruang/product sekitar 30°C.
Cara Kerja Rangkaian Kelistrikan Refrigerator / Kulkas
Pada saat kulkas diberi tegangan yang sesuai dan posisi freezer thermostat dalam keadaan OFF maka aliran listrik akan seperti pada gambar dibawah ini


Sistem masih dalam keadaan mati. Jika kita mengukur dengan menggunakan Voltmeter di kedua kaki kontak Thermostat maka akan terbaca tegangan sesuai tegangan input, misalnya 220VAC. Dalam posisi ini hanya satu komponen yang bisa aktif, yaitu lampu penerangan ruang refrigerator. Jika pintu dibuka maka lampu akan menyala karena mendapat supply tegangan penuh sebesar 220VAC seperti terlihat pada gambar dibawah ini:


Dan jika pintu ditutup lagi, lampu interior di ruang refrigerator akan mati.
Kemudian jika posisi thermostat diubah ke posisi 3 misalnya posisi tersebut adalah range -15°C s/d -20°C, maka aliran listriknya akan menjadi seperti gambar dibawah ini:


Saat kontak Freezer Thermostat terhubung, maka Timer Motor, Evaporator Fan Motor, Kompresor, Running Capacitor, Starting Capacitor dan PTC Starter Relay akan bekerja sesuai dengan fungsinya masing-masing.
Setelah putaran Motor Kompresor mencapai 75% putaran maksimumnya, PTC Starter akan memutus arus yang melalui rangkaian Start Capacitor, karena torsi yang dibutuhkan sekarang tidak terlalu besar (Start Capacitor sudah tidak diperlukan lagi ketika motor sudah mencapai 75% putaran maksimumnya). Tetapi kumparan bantu (lilitan start) masih mendapat arus yang melalui Running Capacitor dengan torsi yang lebih kecil. Untuk lebih jelasnya perhatikan gambar di bawah ini:



Ketika Kompresor bekerja, temperatur dalam ruangan pelahan-lahan akan turun dari 30°C menuju temperatur yang sesuai dengan penyetelan. Ketika temperatur ruang refrigerator turun perlahan2 posisi damper pada thermostat mulai menutup saluran udara yang masuk ke ruang refrigerator, dan akan menutup sempurna ketika temperatur ruangnya mencapai +2°C maka damper akan menutup sempurna. Tidak ada aliran udara lagi yang masuk ke ruang refrigerator.
Sementara temperatur ruang refrigerator telah tercapai, Kompresor masih tetap bekerja untuk mendinginkan ruang freezer-nya. Pada saat temperatur di Evaporator mencapai -2°C, kontak point pada Defrost Thermo akan menutup. Lihat gambar dibawah ini:


Dengan terhubungnya kontak pada defrost thermo, tidak akan memberi pengaruh apa-apa pada sistem. Menutupnya kontak ini hanya sebagai persiapan jika waktu untuk proses defrost tercapai maka Defrost Heater bisa bekerja untuk mencairkan es di Evaporator.
Kembali ke Kompresor yang masih bekerja terus untuk mendinginkan ruangan freezer. Ketika temperatur ruang freezer sampai pada batas penyetelan yaitu -20°C, maka Thermostat akan memutus (cut-out). Katakanlah dari kondisi awal (30°C) sampai tercapai temperatur yang diinginkan (-20°C) memerlukan waktu sekitar 2 jam.
Selama Thermostat ini memutus semua komponen mati kecuali lampu refrigerator jika dibuka akan hidup.
Lihat gambar dibawah:

Ketika Kompresor mati, temperatur ruang perlahan-lahan akan naik kembali. Jadi dari -20°C termperatur naik lagi menjadi -19°C terus naik ke -18°C dan terus sampai mencapai -15°C kontak Thermostat akan kembali terhubungsehingga Kompresor bekerja lagi. Jadi temperatur ruangan akan tetap dijaga antara -20°C sampai dengan -15°C. Begitu juga dengan ruang di refrigerator, jika temperatur naik kembali sampai +4°C maka damper akan membuka kembali.
Proses ini tetap berulang sehingga temperatur di kedua ruang terjaga dalam range yang telah ditentukan (sesuai setting pada thermostat).

Kapan proses defrost dimulai?
Ketika waktu running timer motor tercapai (6 jam). Maka Timer Motor akan memindahkan kontaknya dari posisi 3-4 (Kompressor Run / cooling process) ke posisi 3-2 (defrosting proses / proses pencairan bunga es di Evaporator). Proses pencairan bunga es dimulai. Timer motor mati, sehingga pada kondisi ini hanya kedua Heater (Defrost Heater yag berfungsi mencairkan es di Evaporator dan Plate Heater yang befungsi untuk mencairkan es di bak penampungan air di bawah Evaporator. 
Lihat wiring di bawah untuk penjelasan proses defrost:


Karena Heater aktif, maka lama kelamaan temperatur di bagian Evaporator dan sekitarnya akan naik. Dengan naiknya temperatur ini maka lama kelamaan seluruh es akan mencair. Air hasil prosed defrost ini kemudian ditampung dalam wadah yang diletakkan di bagian bawah (diatas pre-cooler) atau belakang (diatas Kompresor). Ketika temperatur di body Defrost Thermo mencapai +4°C kontak Defrost Thermo akan memutus sehingga Heater akan berhenti bekerja. 


Saat kontak Defrost Thermo memutus, Timer Motor mulai bekerja lagi. Ketika Timer Motor mulai bekerja, kontak pada Timer tidak langsung berpindah, ada perlambatan (delay) sekitar 7 menit. Delay ini bertujuan untuk membiarkan seluruh air jatuh ke bak penampungan dan memberi waktu agar temperatur Heater tidak terlalu tinggi. Sehingga ketika Fan Motor bekerja mensirkulasikan udara tidak membawa panas heater ke dalam ruangan. Setelah delay time tercapai, kontak Defrost Timer akan kembali ke posisi 3-4 dan Kompresor bekerja kembali untuk mendinginkan ruangan.




Direct On-Line Starter (DOL Starter)

DOL Starter adalah metoda starting motor dengan memberikan tegangan penuh dari jala-jala secara langsung.
Starter jenis ini biasanya digunakan untuk motor-motor listrik yang berukuran kecil. DOL Starter digunakan apabila penurunan tegangan saat motor dihidupkan (starting) tidak menjadi masalah atau tegangan jatuh tidak melewati batas toleransi yang diijinkan mengingat arus starting motor jenis ini bisa 4-7 kali lebih besar dari arus nominalnya. Sebagai contoh jika motor dalam kondisi running arusnya sekitar 4 ampere, maka ketika starting bisa mencapai 16 s/d 28 ampere.
DOL Starter umumnya digunakan untuk starting motor dengan kapasitas dibawah 10 kW.


Ada beberapa jenis DOL Starter:
1. Mechanical/Manual Operated 
Cara kerja: Pemberian tegangan pada motor langsung melalui hubungan operator melalui kontak mekanik. Tidak ada hubungan kontrol otomatis untuk starter jenis ini. 
Mechanical/Manual Operated DOL melewatkan jalur utama yang masuk ke motor melalui switch. Kerugiannya pemasangan switch harus sedekat mungkin dengan motor sehingga faktor kerugian tegangan bisa dihindari. DOL Starter jenis ini hanya digunakan untuk motor-motor yang berkapastias kecil.



2. Electromagnetic Operated 
Pemberian tegangan pada motor melalui sebuah kontak elektromagnetik. Posisi saklar bisa jauh dari motor yang dikontrol. Starter jenis ini bisa dihubungkan dengan rangkaian otomatis untuk pengontrolan/safety motor. 


3. Solid State Relay Operated 
Pemberian tegangan pada motor melalui sebuah rangkaian/komponen elektronik. SSR digunakan untuk menghindari percikan bunga api yang biasanya terjadi pada kontak listrik secara mekanik maupun electromagnetik. Starter jenis ini hanya digunakan untuk motor-motor yang berkapasitas kecil.

Monday, April 25, 2011

Siklus Refrigerasi





Penjelasan Siklus Refrigerasi:
A-B : Un-useful superheat (kenaikan temperatur yang menambah beban kompresor). Sebisa mungkin dihindari kontak langsung antara pipa dan udara sekitarnya dengan cara menginsulasi pipa suction.
B-C : proses kompresi (gas refrigeran bertekanan dan temperatur rendah dinaikkan tekanannya sehingga temperaturnya lebih tinggi dari media pendingin di kondenser. Pada proses kompresi ini refrigeran mengalami superheat yang sangat tinggi.
C-D : Proses de-superheating (temperatur refrigeran mengalami pemurunan, tetapi tidak mengalami perubahan wujud, refrigeran masih dalam bentuk gas)
D-E : Proses kondensasi (terjadi perubahan wujud refrigeran dari gas menjadi cair tanpa merubah temperaturnya.
E-F : Proses sub-cooling di kondenser ( refrigeran yang sudah dalam bentuk cair masih membuang kalor ke udara sekitar sehingga mengalami penurunan temperatur). Sangat berguna untuk memastikan refrigeran dalam keadaan cair sempurna.
F-G : Proses sub-cooling di pipa liquid (Refrigeran cair masih mengalami penurunan temperatur karena temperaturnya masih diatas temperatur udara sekitar). Pipa liquid line tidak diinsulasi, agar terjadi perpindahan kalor ke udara, tujuannya untuk menambah kapasitas refrigerasi. (Note: dalam beberapa kasus ..pipa liquid harus diinsulasi…nanti dijelaskan dalam pembahasan khusus)
G-H : Proses ekspansi/penurunan tekanan (Refrigeran dalam bentuk cair diturunkan tekanannya sehingga temperatur saturasinya berada dibawah temperatur ruangan yang didinginkan, tujuannya agar refrigeran cair mudah menguap di evaporator dengan cara menyerap kalor dari udara yang dilewatkan ke evaporator)
Terjadi perubahan wujud refrigeran dari cair menjadi bubble gas sekitar 23% karena penurunan tekanan ini. Jadi refrigeran  yang keluar dari katup ekspansi / masuk ke Evaporator dalam bentuk campuran sekitar 77% cairan dan 23% bubble gas.
H-I : Proses evaporasi (refrigeran yang bertemperatur rendah menyerap kalor dari udara yang dilewatkan ke evaporator. Terjadi perubahan wujud refrigeran dari cair menjadi gas. Terjadi juga penurunan temperatur udara keluar dari evaporator karena kalor dari udara diserap oleh refrigeran)
I-A : Proses superheat di evaporator: Gas refrigeran bertemperatur rendah masih menyerap kalor dari udara karena temperaturnya yang masih dibawah temperatur udara. Temperatur refrigeran mengalami kenaikan). Superheat ini berguna untuk memastikan refrigeran dalam bentuk gas sempurna sebelum masuk ke Kompresor.




Download Files


Siklus Refrigerasi .pdf (146kb)



Siklus Refrigerasi .docx (140kb)



Siklus Refrigerasi .jpeg (788kb)

Sunday, April 24, 2011

Ukuran Kondenser vs Evaporator



Evaporator berfungsi untuk menyerap kalor untuk kemudian dibuang di Kondenser.
Besarnya kalor yang diserap di Evaporator = Qe

Untuk memindahkan kalor yang diserap di Evaporator diperlukan daya/tenaga dari luar/external yaitu Kompresor.
Besarnya daya untuk memindahkan kalor dari Evaporator ke Kondenser = W

Kondenser berfungsi untuk membuang/melepaskan kalor yang diserap oleh Evaporator.
Besarnya kalor yang dibuang di Kondenser =Qc

Daya external untuk menggerakkan Kompresor tidak semuanya menjadi tenaga tetapi sebagian lagi menjadi panas akibat adanya gesekan antara bagian-bagian yang bergerak di Kompresor saat proses kompresi.

Kemana kalor yang timbul akibat gesekan itu harus dibuang agar proses bisa berlangsung terus menerus?
Jawabannya ya di Kondenser.

Persamaannya Qc = Qe + W

Jadi terlihat jelas bahwa ukuran Kondenser akan lebih besar daripada Evaporator karena harus bisa membuang kalor yang diserap di Evaporator ditambah dengan kalor yang timbul selama proses kompresi



Evaporasi
Seperti terlihat pada gambar diatas, proses ini bermula dari titik 4 dan berakhir di titik 1, pada proses ini terjadi kenaikan enthalpy karena refrigeran menyerap sejumlah kalor dari udara/beban pendingian yang melalui Evaporator.

Kompresi

Proses ini terjadi di Kompresor yaitu dari titik 1 dan berakhir di titik 2, dimana kalor yang diserap di Evaporator harus dipindahkan agar proses penyerapan kalor di Evaporator bisa terus berlangsung. 
Secara natural kalor mengalir dari zat yang bertemperatur tinggi ke zat yang bertemperatur lebih rendah. Tetapi kalor juga bisa mengalir dari zat yang bertemperatur lebih rendah ke zat yang bertemperatur lebih tinggi dengan syarat ada media pembantunya, yaitu sebuah pompa kalor. Dalam sistem refrigerasi, Kompresor digunakan sebagai pompa kalor. 
Kenapa harus dikompresikan? 
Sebab pada proses pembuangan kalor harus terjadi secara natural juga, dalam arti temperatur refrigeran harus dinaikkan diatas temperatur media pendingin kondenser agar terjadi proses pelepasan kalor. 
Kompresor bekerja untuk memompa dan menaikkan tekanan refrigeran sehingga temperatur kondensasinya berada diatas temperatur media pendingin Kondenser.
Ketika proses kompresi terjadi gesekan-gesekan diantara bagian-bagian yang bergerak di Kompresor juga kalor yang timbul akibat pembebanan refrigeran yang dipindahkan tersebut. Jumlah kalor yang dibutuhkan untuk proses kompresi ini menjadi penambah kalor yang harus dibuang di Kondenser.

Kondensasi
Proses ini terjadi di Kondenser, berawal dari titik 2 dan berakhir di titik 3, dimana kalor yang diserap di Evaporator dan kalor yang timbul selama proses kompresi harus dibuang sehingga kondisi refrigeran bisa dikembalikan ke kondisi awal proses Evaporasi untuk menjaga kelangsungan siklus refrigerasi.

Ekspansi
Dengan menggunakan sebuah komponen penghambat aliran/pengatur aliran, refrigeran yang sudah kembali ke kondisi awal diturunkan tekanannya untuk memulai lagi proses Evaporasi.
Pada proses ekspansi ini tidak terjadi penambahan/pengurangan kalor (secara teoritis).

Proses ekspansi dimulai dari titik 3 dan berakhir di titik 4.




Siklus berulang terus selama semua komponen bekerja dengan normal dan ukurannya sesuai.




Download Files








Saturday, April 23, 2011

Scroll Compressor




Dasar kompresi:
Prinsip dasar kompresi kompresor scroll adalah interaksi antara fixed scroll (scroll yang tidak bergerak) dengan orbiting scroll (scroll yang bergerak). Kedua scroll ini saling bersinggungan identik satu sama lain tetapi berbeda sudut 180 derajat. Orbit dari scroll yang bergerak akan mengikuti path/jalur yang dibentuk oleh scroll yang tidak bergerak. Keduanya bersinggungan berdasarkan gaya sentrifugal. Ruang kompresi terbentuk dari mulai bagian luar sampai ke bagian dalam dimana volume ruang kompresi semakin diperkecil, akibatnya tekanan menjadi naik dan pada akhir kompresi, refrigeran keluar dari bagian tengah kedua scroll tersebut.


Cara kerja:
Refrigeran gas bertemperatur rendah dan bertekanan rendah (warna biru) masuk dari bagian suction ke ruang kompresor. Refrigeran ini kemudian bersinggungan dgn motor kompresor yang temperaturnya lebih tinggi sehingga terjadi aliran kalor dari motor ke refrigeran (gas refrigeran juga berfungsi untuk mendinginkan motor kompresor). Refrigeran ini kemudian masuk ke intake kompresor untuk memulai proses kompresi. Refrigeran yang terperangkap di ruang scroll kemudian dikompresikan untuk kemudian dikeluarkan dari bagian tengah scroll.
Pada saat proses kompresi, tekanan dan temperatur refrigeran berangsur-angsur naik karena volume ruang kompresi semakin diperkecil.
Refrigeran yang sudah bertekanan dan bertemperatur tinggi ini (warna merah) kemudian keluar dari kompresor melalui pipa discharge. Di bagian discharge terdapat valve disc yang berfungsi untuk mencegah tekanan balik dari discharge/condenser pada saat kompresor mati. Valve disc berfungsi seperti check valve/katup satu arah.
Diantara ruang discharge dan suction terdapat pressure relief valve yang  berfungsi untuk membuang tekanan dari bagian discharge ke bagian suction jika terjadi tekanan yang berlebihan.
Pelumas yang berada dibagian bawah berdasarkan gaya centrifugal naik ke bagian atas untuk melumasi bagian-bagian yang bergerak melalui saluran yang ada dibagian shaft compressor.


Kenapa Scroll Compressor dalam kondisi tertentu sering terdengar suara keras yang  berulang-ulang seperti tiba-tiba loss kompresi?
Scroll  Compressor memiliki internal pressure relief valve jika terjadi over pressure (tekanan kerja berlebih) maka refrigerant dari ruang discharge melalui sebuah komponen yg akan terbuka pada tekanan tertentu yaitu Pressure Relief Valve (PRV) akan dikembalikan ke ruang suction sehingga seperti loss kompresi tetapi bukan karena overheating. Perbedaan tekanan antara discharge dan suction sekitar 375-400psi akan mengaktifkan pressure relief valve. Setelah tekanan kembali normal (mencapai batas differential), PRV akan menutup lagi dan aliran refrigerant kembali melalui jalur normal. 


Apa penyebab terjadinya bypass pressure tersebut?
Penyebab utamanya adalah naiknya tekanan di bagian Kondenser (high side) dikarenakan terhambatnya pembuangan kalor yang disebabkan oleh:
1. Sirip-sirip kondenser yang sudah terlalu kotor/rusak sehingga menghambat pembuangan kalor

2. Terhalangnya aliran udara yang melalui kondenser
3. Kipas Kondenser rusak/ putarannya sudah lemah

4. Pengisian refrigeran yang berlebihan (overcharging)


Saya pernah menemukan satu komponen yang jika phase yang masuk terbalik (untuk yang 3 phase), kompresor jenis ini tidak akan bekerja/hidup, mengapa harus diproteksi?
Mekanisme kompresi Scroll Compressor tidak boleh terbalik artinya hanya bisa bekerja normal apabila berputar pada arah yang benar. Jika terbalik maka Scroll Compressor tidak akan bisa mengkompresikan refrigeran. 
Untuk mencegah terbaliknya putaran kompresor maka dipasanglah alat proteksi yang namanya Phase Reversal Protection Relay. 



Bagaimana cara kerja Phase Reversal Protection Relay?
Terdapat sebuah rangkaian elektronik yang berfungsi untuk mendeteksi urutan sudut phase pada masing-masing power phase yg masuk ke kompresor. Jika urutan phase sudah benar (1-2-3, 2-3-1, atau 3-1-2) maka rangkaian elektronik akan mengaktifkan sebuah relay kontrol yg berfungsi melewatkan arus ke Kontaktor untuk kompresor. Sebaliknya apabila urutan phase salah (1-3-2, 3-2-1, atau 2-1-3) maka rangkaian elektronik tidak akan mengaktifkan relay kontrol, sehingga Kontaktor untuk kompresor tidak akan bekerja. Alat ini juga biasanya dilengkapi dengan sebuah lampu indikasi apabila phase sudah benar (LED hijau menyala) atau salah (LED merah menyala)





Berarti benar-benar aman jika kompresor ini sudah memakai alat proteksi?
Hal yang harus diperhatikan adalah saat penggantian kompresor. Rangkaian elektronik ini bisa saja menyatakan bahwa urutan phase sudah benar, tetapi bagaimana jika pada saat penggantian kompresor, pemasangan kabel ke kompresor salah? Jika anda memiliki alat untuk mendeteksi urutan phase (Phase Sequence Indicator) anda akan dengan mudah memasang kabel ke terminal motor di kompresor dengan benar. Jika tidak memiliki alat ini, pasangkan sesuai urutan aslinya, tetapi jika kompresor penggantinya berbeda dan tidak memiliki marking (1-2-3 atau R-S-T, atau L1-L2-L3) maka langkahnya pasangkan saja 3 kabel phase tersebut ke terminal kompresor, kemudian jalankan sebentar, apabila tidak ada kompresi atau terdengar suara yg keras (biasanya suara yang ditimbulkan akibat terbalik phase akan terdengar kuat dan  terdengar kasar suara mekanik kompresornya). Segera matikan power ke kompresor dan  balik salah satu phase yang masuk ke kompresor (R ke S dan S ke R, 
R ke T dan T ke R, atau S ke T dan T ke S) 










Effisiensi Mesin Pendingin


Effisiensi sebuah mesin pendingin sering dinyatakan dengan istilah COP (Coefficient Of Performance) ataupun EER (Energy Efficiency Ratio).
COP didapatkan dari perbandingan antara Kapasitas Pendinginan Qe (kW) dengan Daya Input Kompressor (kW)
COP = Qe (kW) /W (kW)
atau EER yaitu perbandingan Kapasitas Pendinginan (Btu/h) dengan Daya Input Kompressor (w)
EER = Qe(Btu/h) / W (w)
Semakin besar nilai COP atau EER semakin effisien sebuah mesin pendingin.


Kalau AC split wall mounted yang ada di pasaran, kira kira rentang nilai COP atau EER-nya berapa?
Ssecara umum rata-rata manufakturAC menuliskan 9000Btu/h untuk AC 1pk wall mounted.
itu artinya jika Kompressor dengan daya 1pk akan menghasilkan pendinginan sebesar 9000Btu/h.
1pk = 0.746 kW
1Btu/h = 0.000293071kW


Jadi jika AC memiliki kapasitas pendinginan 9000Btu/h dgn daya input 1pk maka:
COP = (9000 x 0.000293071) / 0.746
COP = 2.638 / 0.746
COP = 3.54


atau EER-nya:
EER = 9000 / 746
EER = 12




Jadi makin besar COP atau EER- nya berarti Performance AC tersebut makin baik?
 Dipasaran ada beberapa manufaktur AC Split yang meng-claim paling hemat listrik dengan teknologi inverter-nya. Apakah ini berarti COP-nya naik juga?
Inverter system bukan berarti menaikkan nilai COP sehingga pemakaian energi listrik menjadi lebih hemat.
Fixed speed drive adalah metoda yg digunakan pada ac konvensional. Kompressor bekerja sesuai dengan tegangan dan frekuensi jala-jala.
Inverter adalah salah satu teknologi utk menghemat pemakaian arus listrik.
Inverter memvariasikan tegangan dan frekuensi sesuai dgn kebutuhan atau dengan pengontrolan seperti PWM (Pulse Width Modulation)
Ketika sistem pendingin mulai start up.....pada AC konvensional terjadi hentakan arus yg sangat besar 4-6kali FLA-nya karena Kompresor langsung mendapat tegangan dan frekuensi penuh (kalau di Indonesia misalnya 220VAC/50Hz utk single phase). Tetapi dengan sistem yg menggunakan teknologi inverter, untuk start up bisa dimulai dari 1/15 FLA sampai kemudian mencapai titik FLA secara bertahap.


Begitu juga ketika temperatur di ruangan yg dikondisikan mulai turun. AC konvensional tetap mendapat supply tegangan dan frekuensi yg sama seperti pada saat start up (kecepatan putaran kompressor tetap / tidak dipengaruhi oleh kondisi beban), berbeda dengan inverter system, dengan menerima input dari sensor ruangan inverter akan memvariasikan kapasitas kompresor menyesuaikan dengan beban pendinginan (kecepatan putar kompressor menyesuaikan beban).
Jadi total penggunaan energi listrik jauh lebih hemat dengan inverter system dibanding dengan model konvensional.
Nilai COP sendiri ditentukan dalam satu kondisi, misalnya pengukuran saat di indoor temperatur 27°CDB / 19°CWB dan outdoor 35°CDB / 24°CWB

Teknologi inverter banyak digunakan pada AC jenis VRV ataupun VRF, apa yang dimaksud dengan VRV atau VRF tersebut?
VRV (Variable Refrigerant Volume) adalah hak patennya Daikin, model yang sama juga ada di manufaktur yang lain dengan nama yang berbeda, misalnya VRF (Variable Refrigerant Flow system) punya Fujitsu.
Pada dasarnya keduanya sama,mengontrol jumlah aliran refrigeran yang mengalir ke Evaporator dan memvariasikan kecepatan putaran Kompresor, fan motor pendingin Kondenser, fan motor sirkulasi udara di Evaporator, intinya menyetel kondisi sistem supaya sesuai dengan kondisi beban.


Kondisi seperti apa yang bisa mempengaruhi effisiensi dan kerusakan apa saja yang umum terjadi pada AC jenis ini?
Kesalahan pada saat pemasangan baik itu piping design ataupun proses penanganan evacuation atau proses vakum atau pun penggunaan refrigeran yg tidak murni menjadi penyebab dasar kerusakan-kerusakan pada sistem.


Salah satu contoh: Proses vakum yg benar adalah dengan menggunakan alat vakum yang standard (mampu mencapai 29.9 inHg Vac.) sehingga mampu mengevakuasi udara dan foreign gas yg berada dalam pipa-pipa pada saat proses instalasi. Keberadaan udara dalam sistem selain menghambat proses refrigerasi juga bisa menyebabkan korosi (kandungan air yg terdapat di udara akan bereaksi dgn logam-logam yg ada di dalam komponen sistem refrigerasi, misalnya komponen mekanik pada kompressor. Yang  pada akhirnya bisa membuat Kompresor macet/electric motor dalam Kompresor menjadi short circuit.





Kesalahan instalasi juga bisa berakibat fatal, pada sistem VRV/VRF pemasangan refnet joint dan ukuran pipa sangat menentukan agar sistem bisa bekerja normal. Pemasangan oil trap juga harus diperhatikan sehingga oli bisa bersirkulasi kembali kedalam kompresor (oli tidak terperangkap di jalur/komponen-komponen di indoor unit). Penggunaan oil separator pada sistem tidak berarti 100% oli tidak ikut bersirkulasi di dalam sistem.


Pemakaian refrigeran yang tidak murni juga sangat mempengaruhi kinerja mesin pendingin. Refrigeran yg beredar dipasaran walaupun type-nya sama bukan berarti 100% sesuai dengan karakteristik kimiawinya.


Admin pernah melakukan testing dengan memakai Refrigerant Identifier untuk melakukan pengecekan kemurnian refrigeran dan hasilnya ternyata untuk salah satu merk refrigeran R-134a yang kisaran harganya 400-500rb/13.6kg ternyata kandungan R-134a-nya cuma 26% sisanya R-22 + uap air.
Dengan menggunakan refrigeran oplosan tersebut sudah jelas akan merusak kinerja mesin pendingin.


Untuk kerusakan electric biasanya disebabkan fluktuasi tegangan listrik yg menyebabkan kinerja mesin tidak stabil.


Kerusakan-kerusakan sensor (thermistor, pressure switch, EEV solenoid dll) biasanya terjadi setelah sistem bekerja dalam waktu yang lama. Selebihnya human error pada saat part manufacturing atau saat instalasi unit.


Klik disini untuk melihat video cara penggunaan Refrigerant Identifier 

Sistem yang terpasang menggunakan R-22, kira-kira ada/tidak spesifikasi yang jelas untuk mengetahui kalau itu refrigeran murni?

Kalau untuk melakukan pengecekan hanya satu cara "gunakan Refrigerant Identifier" yang bisa mengidentifikasi komposisi chemicalnya.
Refrigerant Identifier juga bisa dipakai untuk mengecek kondisi refrigeran dalam sistem yg sudah terpasang/terisi.


Cara lain adalah beli refrigeran yg bermerk seperti ELF, Freon, Genetron, Dupont. Harga memang jauh lebih mahal, tetapi kemurniannya terjamin.

Bagaimana acuan yang baku untuk mengecek tekanan refrigeran yang tepat pada unit, kapan sebaiknya dilakukan pengecekan tersebut?
Paling mudah lakukan pengecekan refrigeran pada saat peak load (biasanya saat siang hari) tapi jangan lagi hujan. Pada saat cuaca panas, mesin pendingin akan bekerja pada titik puncak.
Sistem pendingin ruangan (AC) pada sisi tekanan rendah (Evaporator) bekerja pada titik evaporasi 0-10 derajat Celcius. Maksudnya pada titik puncak (peak load). Temperatur Evaporasi berada dititik 10°C dan pada saat lowest load (beban terendah) tidak lebih rendah dari titik 0°C.
Ingat: "Tekanan kerja system dipengaruhi oleh beban pendinginan, semakin besar beban semakin tinggi kenaikan tekanan kerja system”.
Dari temperatur evaporasi tersebut bisa dikonversi ke tekanan kerja:
Untuk R-22: (0°C =3.97bar s/d 10°C = 5.8bar)
Jadi range-nya dari 3.97 s/d 5.8bar
atau dalam satuan psig = 57.6 s/d 84.1psig
57.6 psig saat beban terendah dan 84.1 psig saat beban puncak

jika system bekerja dibawah tekanan 57.6 di evaporator akan terjadi frost (bunga es) yang terjadi akibat uap air di udara membeku pada pipa di evaporator atau di bagian yang tekanannya dibawah 57.6psig.


Jika sistem bekerja diatas 84.1 psig, sistem bekerja eksta yang bisa menyebabkan overload. Kalaupun tidak terjadi overload, umur Kompressor tidak bisa bertahan lama dan konsumsi arus listrik menjadi lebih boros. Penyebabnya biasanya kapasitas unit pendingin lebih kecil dari beban pendinginan, atau bisa juga sistem mengalami overcharge. 




Biasanya secara umum AC itu disebutkan dalam satuan PK, kalau di liat dari bahasan COP/EER di atas, maksud satuan PK di AC itu adalah daya kompresor? Bukan kapasitas pendinginannya, benarkah?
Di Indonesia daya sebuah motor kompresor sering disebut PK.
PK, yaitu singkatan dari bahasa belanda “Paardekracht” yang artinya juga adalah TENAGA KUDA.
COP/EER adalah ukuran prestasi kinerja suatu mesin pendingin.
Satuan PK yang sering disebut di AC adalah daya Kompresor-nya.
Sedangkan Kapasitas pendingin sering dinyatakan dalam Btu/h atau kW


Saya pernah dengar ada yang bilang kalau ruangan kecil (contoh : 3m x 3m x 3m) pakai AC dengan PK besar (misal 1 PK atau 1 1/2 PK) maka AC bisa rusak. Benarkah?
Kemudian tadi disebutkan bahwa 1 PK = 0,746 kW. Itu sama dengan 746 Watt kan?. Nah bagaimana dengan AC 1 PK tapi wattnya cuma 600 lebih. Apa itu berarti itu gak benar-benar 1 PK?

Ya , bisa dikatakan seperti itu. AC dengan kapasitas yang oversize bisa membuat refrigeran cair tidak menguap dengan sempurna di evaporator (terutama yang menggunakan pipa kapiler sebagai expansion device-nya). Akibatnya refrigeran cair akan masuk ke pipa suction dan kemudian bisa masuk ke Kompresor. Refrigeran cair yang masuk ke Kompresor bisa merusak suction/discharge valve pada Kompresor tersebut.

Yang pasti dengan kapasitas AC yang oversize, pemakaian listrik menjadi lebih boros, biaya instalasi lebih besar. Apalagi jika jenis AC yang digunakan masih type konvensional (tidak ada pengontrolan kapasitas) operasi AC (cycle ON-OFFnya akan lebih sering dibanding dengan AC yang memiliki kapasitas sesuai dengan ukuran ruangan).


Daya sebuah mesin pendingin dinyatakan pada satu titik tertentu.
Misalkan: Manufaktur menyebutkan kapasitas mesin pendingin adalah 9000Btu/h dengan input power 746 Watt pada kondisi indoor temperatur 27°CDB / 19°CWB dan outdoor 35°CDB / 24°CWB
Artinya: Dengan daya 1HP mesin akan menghasilkan kapasitas sebesar 9000Btu/h pada kondisi seperti tersebut diatas. Jika temperatur turun/berbeda dengan data yang diberikan manufaktur maka kapasitas mesin pendingin akan berbeda juga. Begitu juga dengan input power, akan berbeda.
Secara umum dengan daya 1HP sebuah Air Conditioner akan menghasilkan kapasitas pendinginan rata-rata 9000Btu/h apda temperatur evaporasi antara 0 s/d 10°C. Tetapi jika design unit lebih baik lagi maka bisa saja 1HP menghasilkan kapasitas pendinginan diatas 9000Btu/h, hal yg mempengaruhinya adalah COP/EER, semakin besar nilai COP/EER maka semakin effisien sebuah mesin pendingin.
Maka jika membeli Air Conditioner coba perhatikan perbandingan kapasitas pendinginan dengan daya inputnya (perlu diperhatikan juga daya input yg tertulis pada nameplate Air Conditioner adalah daya total untuk seluruh system, jadi daya kompresor akan lebih kecil dari yg tertera pada name plate tersebut.
Bisa saja seperti yang disebutkan dengan daya 600W bisa menghasilkan kapasitas pendinginan 9000Btu/h, tetapi itu bukan berarti Kompresornya 1PK.

COP aktual/COP carnot x 100% itu dipakainya buat apa dan kapan diperlukannya?
Carnot cycle adalah cycle ideal, cycle yg 100% effisien.
sedangkan aktual cycle, selalu terjadi kerugian-kerugian, faktor gesekan, kerugian slip loss pada motor penggerak, dll
Untuk menentukan seberapa besar efisiensi sebuah mesin maka diperlukan pembanding.
Maka carnot cycle adalah pembanding terbaik utk semua mesin yg ada.
Jadi kita bisa membandingkan efisiensi dua mesin aktual yg berbeda, semakin efisien sebuah mesin, semakin hemat dalam konsumsi arus listrik.